Incidence and risk factors for adalimumab and infliximab anti-drug antibodies in rheumatoid arthritis: A European retrospective multicohort analysis

Jocelyn Quistreberta, Signe Hässlerb, Delphine Bachelera, Cyprien Mbogninga, Anne Mustersb, Paul Peter Takb,c,d,e, Carla Ann Wijbrandtsb,f, Marieke Hereniusb, Sytske Anne Bergstrag, Gülşah Akdemirg, Martina Johannessenh, Bernard Combe, Bruno Fautrelj,k, Sylvie Chollet-Martinl, Aude Gleizesl,m, Naoimh Donnellann, Florian Deisenhammero, G P

ARTICLE INFO

Keywords:
Rheumatoid arthritis
Anti-drug antibodies
Anti-TNF treatment
Incidence
Risk factors

OBJECTIVE: To evaluate the incidence of anti-drug antibody (ADA) occurrences and ADA-related risk factors under adalimumab and infliximab treatment in rheumatoid arthritis (RA) patients.

Methods: The study combined retrospective cohorts from the ABIRISK project totaling 366 RA patients treated with adalimumab (n=240) or infliximab (n=126). 92.4% of them anti-TNF naive (n=328/355) and 96.6% of them co-treated with methotrexate (n=341/353) with up to 18 months follow-up. ADA positivity was measured by enzyme–linked immunosorbent assay. The cumulative incidence of ADA was estimated, and potential bio-clinical factors were investigated using a Cox regression model on interval-censored data.

RESULTS: ADAs were detected within 18 months in 19.2% (n=69) of the adalimumab-treated patients and 29.4% (n=37) of the infliximab-treated patients. The cumulative incidence of ADA increased over time. In adalimumab and infliximab groups, respectively, the incidence was 15.4% (5.9) at

https://doi.org/10.1016/j.semarthrit.2018.10.006
040-0172/© 2018 Elsevier Inc. All rights reserved.
Introduction

Biopharmaceuticals are an important class of drug therapies commonly used in clinical practice. Nine biopharmaceuticals are an important class of drug therapies commonly used in clinical practice. Nine biopharmaceuticals are licensed for the treatment of rheumatoid arthritis (RA) in the EU, including infliximab since 1999 and adalimumab since 2003. Biopharmaceuticals are usually used as a second line treatment to treatment. One of the main potential causes of failure is the development of anti-tumor necrosis factor (TNF) therapy [1]. In spite of this progress, primary or secondary failure in the response to biopharmaceuticals is frequent [2, 3]. One of the main potential causes of failure is the development of anti-drug antibodies (ADA) [4, 5]. This unwanted immune response could induce biopharmaceutical neutralization and hypersensitivity reactions that are IgE or non-IgE mediated [6].

ADA production is the final stage of a complex immune process from antigen presentation to activation of both adaptive and regulatory cellular immune responses [7]. Importantly, primary nonresponse to anti-tumor necrosis factor (TNF) therapy could be related to disease mechanisms that are relatively TNF-independent, whilst secondary nonresponse could be explained by ADA formation [8]. The measurement of ADAs could assist in predicting which patient could benefit from switching to a second TNF blocker rather than switching to a different mechanism of action [8], and the prevention of ADA formation could increase the period during which the patient benefits from treatment. The identification, prediction and prevention of anti-drug immunization are thus major goals in biopharmaceutical development [9].

Ada development has a multifactorial aetiology that has not yet been fully elucidated. Many factors (patient-, disease- or drug-related) contribute to the immunogenicity of biopharmaceuticals [10]. Some of these bio-clinical factors such as the length and the dose of the treatment or the route of exposure are easily actionable, while others, such as genetic factors, are risk factors for ADA production that could help to stratify patients. Only a few risk factors for the formation of ADAs, such as lack of concomitant use of methotrexate or not being naive to TNF treatment, have already been identified [11, 12]. Therefore identifying additional risk factors for ADA development (and subsequent lack of treatment efficacy or hypersensitivity reactions) could be of great interest to the clinician [13].

The frequency of ADA development varies across studies depending on the treatment and to the type of assay used. Methods to detect ADAs are as numerous as are the interpretations of the results, for instance the definition of a positive threshold or cut-off, [14]. A previous prospective observational cohort found ADAs against adalimumab in 28% of the patients after 3 years of treatment [4]. The reported rate of ADA occurrence against infliximab in clinical studies ranges from 10% to 50% [15].

The objective of the current study was to evaluate the incidence of ADA occurrences under adalimumab and infliximab treatment, to identify patient-related, disease-related and drug-related factors associated with the occurrence of ADAs, and finally to analyze the factors potentially influencing drug serum levels and the response to treatment.

Patients and methods

Patients

Demographic and clinical data from RA patients from 6 historical cohorts from 3 European countries were anonymized, standardized and uploaded into the ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) database (transSMART software). The ABIRISK tranSMART database has been described in more detail elsewhere [16]. The populations eligible for inclusion in adalimumab and infliximab retrospective longitudinal analyses were selected on the basis of the following criteria: (i) at least 1 dose of adalimumab or infliximab, (ii) at least 1 serum sample in the time-slot 0–18 months following the first biopharmaceutical treatment date, (iii) age over 18 at date of first biopharmaceutical dose.

The dataset analyzed included biopharmaceutical-treated RA patients from France, Sweden and the Netherlands (Amsterdam and Leiden). The cohorts were heterogeneous in terms of numbers of patients and monitoring schemes (Supplementary Fig. 1). In France, the data came from the ESPOIR cohort (Étude et Suivi des Polyarthrites Indifférenciées Récentes) which is a prospective study on patients with early arthritis from 15 centers followed for more than 10 years [17]. These patients had 1 or 2 samples collected at random time points in the period up to 18 months after the start of therapy. In Sweden, the patients were participants in the Epidemiological Investigation of Rheumatoid Arthritis (EIRA) cohort with clinical follow-up data by the Swedish Rheumatology Register and those who had available blood samples within the given follow-up period were included [18]. These patients had 1 sample collected at random time in the period up to 18 months after the start of therapy. The cohort data from EIRA database, Swedish Rheumatology Register, and RA Biobank were retrieved, integrated and queried using the methods described in [19, 20]. In Amsterdam, the data was collected from a cohort of consecutive patients treated with adalimumab [21] and infliximab [22]. The adalimumab group had 1–3 samples collected and the infliximab group had 1–6 samples collected at time points fixed by the studies. In Leiden, the data originated from 2 clinical trials: IMPROVED (Induction therapy with MTX and Prednisone in Rheumatoid Or Very Early arthritis Disease) and BeSt (Behandel Strategieen) [23, 24]. From IMPROVED, we selected patients treated with methotrexate plus adalimumab who had 1 sample collected at a fixed visit at 4 months [23]. From BeSt, we selected patients treated with infliximab and who had samples collected once after 12 months of follow-up [24].

Ethical approval and subject consent for using these samples for research on RA were obtained in each country by the cohort investigators.

Biological sample testing

Biologic drug (adalimumab or infliximab) and anti-drug antibody serum levels in treated patients were measured using the
Lisa-Tracker® Duol enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's instruction (Theradiag®, Marne-la-Vallée, France). This assay enables the simultaneous detection of both drug and ADA, in a micro-well plate format in which half of the plate is coated with TNF-α, to measure drug concentration, and the other half is coated with the drug (adalimumab or infliximab), for the detection of the corresponding ADAs. A calibration range enabled cut-off concentrations to be determined for biopharmaceuticals at 0.3 μg/mL and for ADA at 10 ng/mL. All these assays were performed in a single site, an ABIRISK reference laboratory (Clinical Immunology Laboratory, Kremlin Bicêtre Hospital, AP-HP, France). Patients were defined as positive for ADAs if titres were above 10 ng/mL on at least 1 occasion. The original study protocols were specific to each cohort, therefore patients could have 1 or several visits and stored serum samples (Supplementary Fig. 1). Time lapes between the serum collections at each visit and the previous drug injection were not clearly known. Therefore drug serum levels were not considered as trough concentrations.

ADA outcome

The primary outcome event of interest was the occurrence of a positive follow-up sample in the ADA assay. The time-to-event for positive ADA was calculated from the date of the first treatment to the time of the first positive sample or last follow-up (drop-out, drug switch or censoring at 18 months). The available information was obtained from the monitoring schemes. Thus for this study, the only available information on the time-to-occurrence for positive ADA was whether or not it exceeded some given time points. This particular kind of data is known as interval-censored data and requires specific methods that differ widely from those used for classic right-censored data [25, 26]. Interval-censored data are often encountered in longitudinal studies where the event of interest is not directly observed but is only known to lie within the interval of two pre-scheduled visits. Moreover, in this study there was an unexpected increase in the level of complexity due to the fact that we had to deal with very different monitoring schemes. In practice, for some cohorts there was a fixed monitoring time point (e.g. Leiden) whereas for others there were random monitoring time points. In this latter case, single (Sweden) or multiple time points (France, ESPoir or Amsterdam) were possible. This heterogeneity in the sampling pattern is important to take into account since it can lead to some informative censoring problems that can induce false associations. The censoring is called informative when it provides information regarding the survival distribution and the factors under study [27]. Thus, in order to cope with this complex data, we used interval-censored methods and analyzed cohorts having a similar sampling scheme. This led us to exclude the Leiden cohort, IMPROVED, for adalimumab and the Amsterdam cohort for infliximab when investigating prognostic factors for ADA.

Response to treatment

We also investigated the clinical response to treatment, which was assessed according to the European League Against Rheumatism (EULAR) response criteria [28] based on the disease activity score in 28 joints (DAS28) [29], calculated between the date of each sample collection and just before the date of the first biopharmaceutical dose. EULAR response was therefore calculated at the same time as sample collections and considered as a binary outcome, a non-response versus a moderate/good response.

Statistical analysis

We present the results of separate analyses for adalimumab and infliximab. The baseline characteristics of the patients were compared between groups using Fisher’s exact tests (for small samples). For quantitative variables, Kruskal–Wallis tests were used (no normality assumption). The Kruskal–Wallis test was used to compare drug serum levels between positive and negative ADA patients. When significant, exact p-values were calculated using Dunn’s nonparametric test. To measure the correlation between ADA serum levels and drug serum levels, Kendall’s rank correlation coefficient was used. The cumulative incidence of ADA over the study was calculated as the complement of the survival function S under interval censoring. The non-parametric maximum likelihood estimation (NPLME) of the survival function S was obtained using Turnbull’s algorithm [30]. The 95% confidence intervals (95% CIs) were calculated with a modified bootstrap method. In order to describe ADA development over time, ADA survival distribution curves were plotted using the cumulative hazard estimation obtained previously. To compare the survival curves we used logrank tests adapted for interval-censored data and we reported the p-values. The test is an extension of the usual logrank test from right-censored data, as developed by Sun [31]. In the multivariate analyses, we considered the Cox proportional hazards model via a multiple imputation strategy for unobserved survival times as proposed by Pan [32]. Briefly, the interval-censored data are considered as missing event times and are imputed by the asymptotic normal data augmentation scheme based on the current estimates of the observed data. Then a Cox proportional hazards model is applied to the augmented data to update the estimates. Hazard ratios (HRs) and their 95% CIs were reported. The multivariable model was adjusted for cohort as a covariate and included all the variables explored in univariable analyses: age (18–50 years old vs. > 50), sex, anti-TNF naïvety (yes/no, for adalimumab group only), lifetime smoking status (yes/no), disease duration before start of the biopharmaceutical treatment (< 1 year, 1–3 years, > 3 years), positivity for rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA) (yes/no), baseline DAS28 (< 3.2, 3.2–5.1, > 5.1), concomitant use of methotrexate (yes/no, for adalimumab group only), concomitant non-steroid anti-inflammatory drugs (NSAIDs) and corticosteroids (yes/no). Patients with missing data for at least one explanatory variable were excluded. A linear mixed-effects model was fitted to evaluate the association between drug serum levels and ADA status. The multivariable model included variables that may be potential confounders. Some patients could have been tested several times; therefore, a random effect parameter was estimated in order to consider the dependency of repeated measures. A Cox proportional hazards model was used to assess the benefit of the treatment (i.e. moderate or good versus non-response according to the EULAR criteria) as a function of the ADA status and drug serum levels. Some patients could have had several visits and it was assumed that the model identified dependent observations.

For all tests, statistical significance was considered to be a p-value under 0.05. All analyses were carried out using R software (version 3.0.2) and related packages “survival”, “interval” and “MIICD” [33–36].

Results

A total of 366 RA patients fulfilled the inclusion criteria. Of these, 240 were treated with adalimumab and 126 with infliximab. The flowchart shown in Fig. 1 gives the details of the selection process. Patients’ characteristics at baseline are shown in Tables 1 and 2. Among adalimumab-treated patients there were significant differences between cohorts regarding age, percentages of previous anti-TNF treatment, follow-up, disease duration, ACPA positivity, DAS28 score and concomitant use of methotrexate, NSAIDs and corticosteroids. Among infliximab-treated patients there were significant differences between cohorts regarding age, lifetime smoking status, follow-up, disease duration, ACPA positivity, DAS28 score and the concomitant use of corticosteroids. Over a maximum follow-up of 18 months, ADA were detected in 46 adalimumab-treated patients (19.2%) and 37
infliximab-treated patients (29.4%). The median time to ADA occurrence was 4.5 months (interquartile range IQR 3.7–11.3) in adalimumab-treated patients and 13 months (IQR 11.9–15.0) in infliximab-treated patients. There were 341 and 171 samples available respectively for adalimumab- and infliximab-treated patients, (Supplementary Tables 1 and 2). Positive ADA samples had lower adalimumab and infliximab serum levels than negative ADA samples, significant for adalimumab at 0–6 months (p = 0.002) and 6–12 months (p < 0.001) and for infliximab at 6–12 months (p < 0.001) and 12–18 months (p < 0.001) after the start of therapy (Supplementary Fig. 2).

There was a reverse correlation between ADA levels and drug serum levels, significant for both adalimumab (correlation coefficient $r = -0.20$, p < 0.001) and infliximab (correlation coefficient $r = -0.51$, p < 0.001) (Supplementary Fig. 2).

Incidence and risk factors for ADA development

The cumulative incidences of ADA in the adalimumab group and in the infliximab group were, respectively, 15.4% (95% CI 5.2–20.2) and 0% (95% CI 0–5.9) at 3 months, 17.6% (95% CI 11.4–26.4) and 0% (95% CI 0–5.9) at 12 months, and 19.7% (95% CI 12.7–25.2) and 0% (95% CI 0–5.9) at 24 months (Supplementary Fig. 3).

Table 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sweden, EIRA (n = 18)</th>
<th>France, ESPOIR (n = 68)</th>
<th>the Netherlands, Leiden, IMPROVED (n = 62)a</th>
<th>the Netherlands, Amsterdam (n = 92)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), years</td>
<td>49.7 ± 14</td>
<td>47.0 ± 11</td>
<td>52.2 ± 13</td>
<td>52.3 ± 13</td>
<td>0.03</td>
</tr>
<tr>
<td>Female (%)</td>
<td>16 (88.9)</td>
<td>51 (75.0)</td>
<td>45 (72.6)</td>
<td>68 (74.0)</td>
<td>0.58</td>
</tr>
<tr>
<td>Lifetime smoking (%)</td>
<td>10 (55.6)</td>
<td>34 (50.0)</td>
<td>32 (51.6)</td>
<td>49 (63.7)</td>
<td>0.35</td>
</tr>
<tr>
<td>Anti-TNF naivety (%)</td>
<td>18 (100)</td>
<td>62 (91.2)</td>
<td>62 (100)</td>
<td>61 (75.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up, median (IQR), months</td>
<td>13.3 (8.2–11.1)</td>
<td>5.9 (3.3–7.0)</td>
<td>3.7 (3.6–4.1)</td>
<td>9.1 (8.7–9.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Disease status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease duration, median (IQR), yearsc</td>
<td>1.0 (1.0–2.0)</td>
<td>1.9 (1.1–4.0)</td>
<td>0.8 (0.5–1.1)</td>
<td>5.0 (2.5–11.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>RF positivity (%)d</td>
<td>12 (66.7)</td>
<td>47 (69.1)</td>
<td>33 (56.0)</td>
<td>50 (66.0)</td>
<td>0.46</td>
</tr>
<tr>
<td>ACPA positivity (%)d</td>
<td>14 (82.4)</td>
<td>44 (64.7)</td>
<td>32 (51.6)</td>
<td>68 (74.7)</td>
<td>0.01</td>
</tr>
<tr>
<td>DAS28, mean (SD)d</td>
<td>5.1 ± 1.5</td>
<td>4.9 ± 1.6</td>
<td>3.6 ± 1.2</td>
<td>5.3 ± 1.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Concomitant anti-rheumatic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate use (%)e</td>
<td>15 (93.8)</td>
<td>59 (86.8)</td>
<td>62 (100)</td>
<td>81 (98.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>NSAIDs use (%)</td>
<td>8 (44.4)</td>
<td>35 (51.5)</td>
<td>12 (19.4)</td>
<td>56 (60.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Corticosteroids use (%)</td>
<td>8 (44.4)</td>
<td>31 (45.6)</td>
<td>0 (0.0)</td>
<td>26 (28.3)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

a Cohort excluded from the univariable and multivariable analyses of anti-drug antibody risk factors.

b P-values of comparison tests between cohorts.

c Data for categorical or quantitative variables is presented as percentage, mean or median of non-missing data. SD, standard deviation; IQR, interquartile range; Anti-TNF, anti-tumor necrosis factor; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; DAS28, disease activity score in 28 joints; NSAIDs, non-steroid anti-inflammatory drugs.
Among the infliximab-treated patients from Sweden, France and the Netherlands (Leiden), there was no statistically significant variable associated with the development of ADA (Supplementary Fig. 3). In a multivariable Cox regression model for infliximab-treated patients (n = 113) with the same variables as for the adalimumab analysis shown in Table 4 except anti-TNF naïvety and concomitant use of methotrexate, we found similar association of ADAs with disease duration between 1 and 3 years (HR, 2.7 95% CI 1.1–6.3) compared to disease duration shorter than 1 year. Lifetime smoking was associated with a higher risk of ADA (HR, 2.7 95% CI 1.2–6.3). An increase in DAS28 was of borderline significance (HR, 1.3 95% CI 0.5–1.9).

Association of drug serum levels with ADA status and baseline factors

In a univariable analysis of ADA status on 341 samples from 240 patients treated with adalimumab, ADA positivity was significantly associated with a lower adalimumab drug serum level (β coefficient, −3.4, 95% CI −5.7; −1.2). The mean concentrations of adalimumab were 6.7 μg/mL in ADA positive patients and 10.6 μg/mL in ADA negative patients. After adjusting for potential confounders in a

![Figure 2](image)

Figure 2. Cumulative incidence of anti-drug antibody (ADA). Cumulative incidence of ADA over a maximum of 18 months follow-up in 240 adalimumab-treated patients (A) and 126 infliximab-treated patients (B).

Table 2

Demographic and clinical characteristics at baseline in infliximab-treated patients stratified by cohort

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sweden, EIRA (n = 60)</th>
<th>France, ESPoir (n = 11)</th>
<th>the Netherlands, Leiden, BeSt (n = 43)</th>
<th>the Netherlands, Amsterdam (n = 12)</th>
<th>P-valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), years</td>
<td>47.7 ± 13</td>
<td>42.6 ± 14</td>
<td>55.5 ± 13</td>
<td>56.7 ± 10</td>
<td>0.004</td>
</tr>
<tr>
<td>Female (%)</td>
<td>43 (71.7)</td>
<td>8 (72.7)</td>
<td>26 (60.5)</td>
<td>7 (58.3)</td>
<td>0.56</td>
</tr>
<tr>
<td>Lifetime smoking (%)</td>
<td>41 (68.3)</td>
<td>5 (45.5)</td>
<td>16 (37.2)</td>
<td>2 (16.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Anti-TNF naïvety (%)</td>
<td>60 (100)</td>
<td>10 (90.9)</td>
<td>43 (100)</td>
<td>12 (100)</td>
<td>0.09</td>
</tr>
<tr>
<td>Follow-up, median (IQR), months</td>
<td>13.6 (7.4–15.2)</td>
<td>8.1 (6.0–10.0)</td>
<td>12.0 (11.7–12.3)</td>
<td>5.5 (5.4–5.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Disease status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease duration, median (IQR), years</td>
<td>1.0 (1.0–2.0)</td>
<td>2.1 (1.5–4.2)</td>
<td>0.4 (0.4–1.1)</td>
<td>7.1 (3.3–16.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>RF positivity (%)</td>
<td>40 (66.7)</td>
<td>7 (63.7)</td>
<td>26 (60.5)</td>
<td>9 (75.0)</td>
<td>0.78</td>
</tr>
<tr>
<td>ACPA positivity (%)</td>
<td>40 (66.7)</td>
<td>9 (81.8)</td>
<td>26 (60.5)</td>
<td>12 (100)</td>
<td>0.03</td>
</tr>
<tr>
<td>DAS28, mean (SD)</td>
<td>5.1 ± 1.4</td>
<td>4.3 ± 1.2</td>
<td>6.0 ± 0.8</td>
<td>5.4 ± 1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Concomitant anti-rheumatic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate use (%)</td>
<td>59 (100)</td>
<td>10 (90.9)</td>
<td>43 (100)</td>
<td>12 (100)</td>
<td>0.09</td>
</tr>
<tr>
<td>NSAIDs use (%)</td>
<td>38 (63.3)</td>
<td>4 (36.4)</td>
<td>24 (55.8)</td>
<td>7 (58.3)</td>
<td>0.41</td>
</tr>
<tr>
<td>Corticosteroids use (%)</td>
<td>23 (38.3)</td>
<td>7 (63.6)</td>
<td>0 (0.0)</td>
<td>2 (16.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Cohort excluded from the univariable and multivariable analyses of anti-drug antibody risk factors.

b P-values of comparison tests between cohorts.

d Data for categorical or quantitative variables is presented as percentage, mean or median of non-missing data. SD, standard deviation; IQR, interquartile range; Anti-TNF, anti-tumor necrosis factor; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; DAS28, disease activity score in 28 joints; NSAIDs, non-steroid anti-inflammatory drugs.
multivariable model performed on 287 samples from 206 patients data for at least one risk factor were excluded. Bold text indicates a statistically significant hazard ratio.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Baseline risk factors for anti-adalimumab antibodies in 148 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multivariable model<sup>a</sup></td>
</tr>
<tr>
<td>Age</td>
<td>18–50</td>
</tr>
<tr>
<td></td>
<td>50+</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Lifetime smoking</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Anti-TNF naivety</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Disease duration</td>
<td>0–1</td>
</tr>
<tr>
<td></td>
<td>1–3</td>
</tr>
<tr>
<td></td>
<td>3+</td>
</tr>
<tr>
<td>RF positivity</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>ACPA positivity</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Baseline DAS28</td>
<td>Low (0–2.2)</td>
</tr>
<tr>
<td></td>
<td>Moderate (2.3–5.1)</td>
</tr>
<tr>
<td></td>
<td>High (5.1+)</td>
</tr>
<tr>
<td>Methotrexate use</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>NSAIDs use</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Corticosteroids use</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

^a Patients from the Netherlands, Leiden, IMPROVED cohort and patients with missing data for at least one risk factor were excluded.

^b Hazard ratio.

^c 95% confidence interval.

^d Adjusted on cohorts (Sweden EIRA, France ESPOIR, the Netherlands, Amsterdam),RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; DAS28, disease activity score in 28 joints; NSAIDs, non-steroid anti-inflammatory drugs. Bold text indicates a statistically significant hazard ratio.

The effect of ADA status and drug serum levels on the clinical response to treatment was analyzed using a multivariable Cox regression model. ADA positivity was significantly associated with a lower probability of good or moderate EULAR response for 215 adalimumab-treated patients (278 clinical observations available; HR, 0.58, 95% CI 0.39–0.86) and 125 infliximab-treated patients (149 clinical observations available; HR, 0.61, 95% CI 0.32–0.76) (Supplementary Table 4).

Discussion

This study confirms ADA occurrence in 20–30% of RA patients treated with adalimumab or infliximab, for most of them anti-TNF naïve and co-treated with methotrexate. Interestingly we observed that ADA production occurred later than expected and increased over the 18 months of follow-up without reaching a plateau. Furthermore, we found that longer disease duration (over 1 year) was a risk factor of ADA development against both adalimumab and infliximab while a higher baseline DAS28 was associated with a higher risk of ADA against adalimumab and lifetime smoking status with a higher risk of ADA against infliximab. The data confirmed that ADA positivity was associated with lower drug serum levels, for both adalimumab and infliximab, and with a poorer clinical response.

This study is the first collaborative cohort analysis exploring the occurrence of ADAs in different populations of RA patients. Its main strength was that it used a large dataset that combined cohorts from 3 European countries and analyzed censored time-to-ADA outcome. It is worth noting that the analyses were performed using interval-censored methods that took into account the fact that, in this study, ADA positivity outcome was known only to fall within a monitoring interval. Indeed, use of classic survival methodology for data of this sort can lead to inaccurate conclusions by underestimating the variability of the parameters estimated [37].

An interesting result highlighted by our study is that, for both treatments, the cumulative incidence of ADAs exhibits a sigmoidal shape, with the appearance of ADAs mainly after 6 to 12 months of treatment. These results were different from those of a previous study which showed that almost 10% of the patients developed ADAs after only 4 weeks and two-thirds of the positive patients had ADAs within 28 weeks [4]. This is most likely due to the type of assay and appearance of ADA is highly dependent on the sensitivity of the assays [38]. The currently ongoing ABIRISK prospective studies, which include 250 patients with RA, will give opportunity to confirm these new findings which, interestingly, could explain why there is a continuous and regular rate of secondary failures without any plateau effect in patients treated with TNF inhibitors. ADAs were detected more frequently in infliximab-treated patients (29.4%) than in adalimumab-treated patients (9.2%). But the median time to ADA occurrence was only 4.5 months in adalimumab-treated patients and 13 months in infliximab-treated patients. This could be due to the heterogeneity of serum collection dates in the different cohorts. Indeed, the first sample collection occurred before 12 months for 223/240 adalimumab-treated patients (92.9%) and 64/126 infliximab-treated patients (50.8%) (Supplementary Tables 5 and 6) and thus the probability of detecting ADA before 12 months was less with infliximab.
To our knowledge, in RA, effect of disease duration as a predictor of ADA formation has not been analyzed. Although there is evidence of association between ADA formation and disease activity change [4, 5, 39, 40], baseline DAS28 as a risk factor that could likely influence the development of ADA while taking into account of time variation, repeated measures or other covariates has not been fully investigated. In our study, longer disease duration and a high DAS28 increased the risk of ADA occurrence. The impact of disease duration on ADA induction could in part explain why disease duration is an important factor predicting negative response to treatment [41]. It is worth noting that the borderline significance for either very long disease duration (≥ 3 years) or very high DAS28 activity (≥ 5.1) could be related to the loss of statistical power on account of the small sample size. Finally we found an association between lifetime tobacco smoking and ADA production in infliximab. In the literature, few studies have described the influence of tobacco consumption on ADA occurrence. In multiple sclerosis (MS), tobacco smoking is associated with the risk of neutralizing antibody production against interferon-beta and natalizumab therapy [42–44], although another study has contradicted this association [45] and the mechanism behind this association is not yet understood. Cigarette smoking affects both cell-mediated and humoral immune response [46]. However, smoking is a well-known risk factor for RA mainly associated with ACPA formation [47], suggesting that smoking could be associated with an overall B-cell response in RA. In our study anti-TNF naïve and concomitant use of methotrexate were not associated with ADA development in the adalimumab group although the prior use of anti-TNF is known to increase immunogenicity of a second anti-TNF treatment [48, 49], and combination therapy with methotrexate is known to reduce immunogenicity [50, 51]. However, our study was not powered to analyze the effect of prior anti-TNF treatment or concomitant use of methotrexate since a large majority of the patients (328/355 and 341/353, respectively) were in this situation. In the univariable analysis, patients with concomitant use of corticosteroids in the adalimumab group presented an unexpected risk of ADA occurrence. However it was not significant in the multivariable analysis of both treatments. Although corticosteroids have an immunosuppressive effect, their role in combined therapy to reduce anti-TNF immunogenicity is not clear. In a previous study in Crohn’s disease, the hydrocortisone premedication reduced anti-infliximab antibodies concentration but not their formation [52]. Other studies in RA do not support an influence of corticosteroids on ADA development [5, 53]. A possible explanation to the discordant results between the univariable and multivariate analysis might be that corticosteroids are more often given to patients with higher DAS28 at baseline and the association observed in the univariable test is only due to a confusion bias with disease severity, which is the real factor behind the association and is confirmed significant in the multivariable analysis. This also highlights the importance of taking into account other covariates, which has not been performed in previous studies on ADAs against anti-TNF treatments.

We also confirmed the previously established association between ADA positivity and a decreasing drug serum concentration for both treatments [11, 54]. Diminished drug serum levels are probably consequences of ADA development and can result either from an increased drug clearance via the formation of immune complexes [55] or via the functional neutralization of the drug via a blocking of its binding to the target, which interferes with the ADA detection assay [54]. The marked decrease of drug serum concentrations in blood as a result of ADA formation could probably explain the reverse association between ADA positivity and a better clinical response also found in a number of previous studies [4, 40, 56–58].

One of the drawbacks of this study was that it gathered cohorts with heterogeneous sampling schemes. As shown in Supplementary Fig. 1, the Leiden cohort for adalimumab and the Amsterdam cohort for infliximab were the only two cohorts with pre-scheduled visits while having a shorter follow-up period. Due to an unexpected very low number of events, the follow-up time may have been too short and not sufficient to observe the formation of ADAs. This hypothesis was confirmed by a consistently high drug level in these two cohorts. Furthermore a verification was done on the quality of the stored serum and integrity of immunoglobulins by retesting RF and ACPA on historically positive samples from Amsterdam which were confirmed positive (data not shown). This led us to focus our univariable and multivariable analyses on the cohorts with a similar sampling pattern. Thus, to investigate prognostic factors we excluded the Leiden cohort for adalimumab and the Amsterdam cohort for infliximab, to avoid informative censoring. In addition, the same analyses were performed including the two cohorts that led to identify the same risk factors (Supplementary Tables 7 and 8). In our study, we used a commercial ELISA kit to measure ADA serum level. Although they are more sensitive to drug interference which could have led to an underestimation of the incidence of ADA appearance (in particular at early time points when the ADA titre was still low), ELISA assays have the advantage of being the most suitable tests for routine use in any hospital or laboratory for reasons of cost and simplicity. Another limitation was that serum samples were collected during routine visits, although ideally trough concentration serum samples should be used in studies to test immunogenicity and treatment response. This is less of a concern for adalimumab where non-trough drug serum levels have previously been shown to be associated with trough serum levels and with ADAs [49]. In addition, drug serum levels were inversely associated with ADA positivity and concentration, as expected (Supplementary Fig. 2). These data represent the real-life clinical practice, where the assessment of trough samples is not always practical.

To conclude, this study provides new insights into adalimumab and infliximab immunogenicity. ADA occurrence appears to be a delayed phenomenon. Even if more than 95% of the patients were cotreated with methotrexate, 20–30% of them treated with adalimumab or infliximab developed ADAs and the risk of occurrence continued to increase over time up to 18 months of follow-up, without reaching a plateau. It is interesting to find that in real-life patients, almost all treated with methotrexate, the rate of ADA may be significant and may increase over time. A longer disease duration, a higher baseline DAS28 and lifetime smoking were found to be important risk factors for ADA development against adalimumab and/or infliximab. Since ADAs have a negative impact on clinical response and vary inversely with drug serum levels, these factors could be taken into account to tailor therapeutic drug monitoring to each patient.

Authors’ contributions
Conceptualization: S Hässler, D Bachelet, J Davidson, P Broët, X Mariette.
Methodology: J Quistrebert, P Broët, C Mbogning.
Resources: X Mariette, B Combe, B Fautrel, T Huizinga, N De Vries, PP Tak, CA Wijbrandts, M Herenius, I Abugessaisa, S Saevarsdottir, S Hacein-Bey-Abina, M Pallardy.
Supervision: S Hässler, P Broët, X Mariette.
Visualization: J Quistrebert.
All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.
Competing interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coiDisclosure.pdf and declare: J Quistrebert, S Hässler, D Bachelet, C Mbohning, A Musters, PP Tak, CA Wijbrands, M Herenius, SA Bergstra, G Akdemir, M Johannesson, B Combe, B Faurel, S Chollet-Martin, A Gleizes, N Donnellan, F Deisenhammer, A Hinceley-Mery, A Fogdell-Hahn, N De Vries, T Huizinga, I Abugessaisa, S Saevarsdottir, S Hacein-Bey-Arnaud, M Pallardy, P Broét: have nothing to disclose. X Mariette received honorarium (less than $10,000) from BMS, GSK, Pfizer, UCB. J Davidson reports being salaried and holding shares from GlaxoSmithKline R&D, outside the submitted work. P Dönnes reports grants from Innovative Medicines Initiative Joint Undertaking during the conduct of the study.

Data sharing

Data availability is restricted due to patient data confidentiality. A dataset authorising repeats of the analyses presented in this article is available on request, and should be submitted to the ABIRISK steering committee via P Dönnes.

Acknowledgments

The research leading to these results was conducted as part of the ABIRISK consortium (Anti-Biopharmaceutical Immunization: Prediction and analysis of clinical relevance to minimize the risk). For further information, please refer to www.abirisk.eu.

We gratefully acknowledge support from the Department of Public Health, Clermont-Ferrand University Hospital, France. We thank the eTRIKS consortium (https://www.etriks.org) for their support in the construction of the TranSMART database.

The ESPOIR cohort was set up thanks to an unrestricted grant from Merck Sharp and Dohme (MSD) allocated for the study. National grants from INSERM were obtained to support part of the biological preparation of the manuscript were performed by the authors.

Study design, data collection, trial management, data analysis and preparation of the manuscript were performed by the authors.

We thank Angela Swaine Verdier and Sarah Verdier Leyshon for providing language help.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.semarthritis.2018.10.006.

References

[29] Preveo ML, van ’t Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective

