EXTENDED REPORT

Identification of secreted phosphoprotein 1 gene as a new rheumatoid arthritis susceptibility gene

Handling editor Tore K Kvien

ABSTRACT

Objective To evaluate the contribution of the SPP1 rs11439060 and rs9138 polymorphisms, previously reported as autoimmune risk variants, in the rheumatoid arthritis (RA) genetic background according to anti-citrullinated protein antibodies (ACPAs) status of RA individuals.

Methods We analysed a total of 11 715 RA cases and 26 493 controls from nine independent cohorts; all individuals were genotyped or had imputed genotypes for SPP1 rs11439060 and rs9138. The effect of the SPP1 rs11439060 and rs9138 risk-allele combination on osteopontin (OPN) expression in macrophages and OPN serum levels was investigated.

Results We provide evidence for a distinct contribution of SPP1 to RA susceptibility according to ACPA status: the combination of ≥3 SPP1 rs11439060 and rs9138 common alleles was associated mainly with ACPA negativity (p=1.29×10−5, ORACPA-negative 1.257 (1.135 to 1.394)) and less with ACPA positivity (p=0.0148, ORACPA-positive 1.072 (1.014 to 1.134)). The ORs between these subgroups (ie, ACPA-positive and ACPA-negative) significantly differed (p=7.33×10−3). Expression quantitative trait locus analysis revealed an association of the SPP1 risk-allele combination with decreased SPP1 expression in peripheral macrophages from 599 individuals. To corroborate these findings, we found an association of the SPP1 risk-allele combination and low serum level of secreted OPN (p=0.0157), as well as serum level of secreted OPN correlated positively with ACPA production (p=0.005; r=0.483).

Conclusions We demonstrate a significant contribution of the combination of SPP1 rs11439060 and rs9138 frequent alleles to risk of RA, the magnitude of the association being greater in patients negative for ACPAs.

INTRODUCTION

Rheumatoid arthritis (RA) is a common, complex disease affecting 0.5–1% of the population. It can be subdivided clinically by the presence or absence of autoantibodies directed against the Fc portion of immunoglobulins (rheumatoid factor (RF)) and against citrullinated peptides (anti-citrullinated protein antibodies (ACPAs)).6 Both genome-wide association studies (GWAS) and custom single-nucleotide polymorphism (SNP) immunochip arrays have identified 46 risk loci among subjects of European ancestry; some of these loci share autoimmune associations.7–9 To date, most RA risk alleles have been identified and validated in ACPA-positive patients7–9 or by pooling both ACPA-negative and ACPA-positive patients.4 8 9 but little is known about the genetic contribution to ACPA-negative RA. The heritability of ACPA-positive and ACPA-negative disease is comparable,10 and recent association studies provided further support for distinct genetic aetiologies of ACPA-positive and ACPA-negative RA subsets.11 12

Type I interferons (IFNs), a family of cytokines essential for antiviral immunity, have a prominent role in both autoimmunity and pathophysiological aspects of RA. A subgroup of RA patients with high ACAP level showed increased expression of type I IFN-inducible genes.13 14 Several GWAS of RA have identified hits for molecules such as tyrosine kinase 2 and IFN regulatory factor 8 or 5, which participate in type I IFN signalling.4 Recently, to further substantiate the involvement of type I IFN in the development of autoimmune phenotypes, recessive mutations in the ACS5 gene (encoding tastrate-resistant acid phosphatase (TRAP)) were identified to cause spondyloenchondrodysplasia (OMIM 271550), a rare disease associated with systemic lupus erythematosus (SLE)-related autoimmunity.15 16 A major substrate of TRAP is osteopontin (OPN), an extracellular-matrix–glycosylated phosphoprotein with multiple functions including bone formation and remodelling,17 T-cell and B-cell activation18 and type I IFN
production. Elevated plasma levels of secreted OPN (s-OPN) were found in RA and at sites of bone erosion in a murine experimental model of collagen-induced arthritis.

To further support the role of OPN in autoimmunity, studies have suggested an association of variants of secreted phosphoprotein 1 (SPP1), which encodes OPN, and several autoimmune conditions. In addition, several studies convincingly identified SPP1 as an SLE susceptibility gene. Among the SPP1 autoimmune risk variants previously identified, rs11439060, rs3841116 and rs9138 are of interest. The rs9138 minor allele (C) (+1239A>C), located in the 3’ untranslated region (3’ UTR), was found to be associated with high serum OPN levels and high serum IFNα activity in SLE. Interindividual differences in OPN expression may be influenced by variations in the promoter region: a G insertion at rs11439060-rs9138 haplotype and RA in a case-control study involving a large number of samples.

These findings prompted us to test a possible association of the SPP1 rs11439060-rs9138 haplotype and RA in a case-control study involving a large number of samples.

Table 1 Samples used for analysis

<table>
<thead>
<tr>
<th>Cases</th>
<th>Female (%)</th>
<th>ACPA+ (n)</th>
<th>ACPA– (n)</th>
<th>Controls</th>
<th>Female (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (FRAGC)</td>
<td>1584 78</td>
<td>753 (54)</td>
<td>649 (46)</td>
<td>1211 62</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>1775 73</td>
<td>856 (60)</td>
<td>572 (40)</td>
<td>1504 54</td>
<td></td>
</tr>
<tr>
<td>Sweden (EIRA)</td>
<td>3074 72</td>
<td>1975 (64)</td>
<td>1095 (36)</td>
<td>2201 72</td>
<td></td>
</tr>
<tr>
<td>UK (WTCCC)</td>
<td>1448 76</td>
<td>1448 (100)</td>
<td>0 (0)</td>
<td>10 053 48</td>
<td></td>
</tr>
<tr>
<td>US (BRASS)</td>
<td>474 81</td>
<td>474 (100)</td>
<td>0 (0)</td>
<td>1605 46</td>
<td></td>
</tr>
<tr>
<td>US (NARAC1)</td>
<td>853 74</td>
<td>853 (100)</td>
<td>0 (0)</td>
<td>1172 71</td>
<td></td>
</tr>
<tr>
<td>US (NARAC2)</td>
<td>869 49</td>
<td>869 (100)</td>
<td>0 (0)</td>
<td>6419 49</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>570 76</td>
<td>570 (100)</td>
<td>0 (0)</td>
<td>1517 54</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>1099 80</td>
<td>735 (89)</td>
<td>91 (11)</td>
<td>811 71</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11 715 73</td>
<td>8533 (78)</td>
<td>2407 (22)</td>
<td>26 493 53</td>
<td></td>
</tr>
</tbody>
</table>

Rheumatoid arthritis (RA) cases were from nine samples with available genotypes for both rs11439060 and rs9138 markers. Samples from France, Spain, Sweden and Japan underwent genotyping for markers. Markers in other samples were imputed from data from Stahl et al. RA cases were classified as anti-citrullinated protein antibodies (ACPA)-positive (ACPA+) or ACPA-negative (ACPA–). FRAGC, French Rheumatoid Arthritis Genetic Consortium; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; WTCCC, Wellcome Trust Case Control Consortium; BRASS, Brigham and Women’s Hospital Rheumatoid Arthritis Quiescent Study; NARAC, North American Rheumatoid Arthritis Consortium.

Table 2 SPP1 rs11439060-rs9138 haplotype frequencies

<table>
<thead>
<tr>
<th>LD</th>
<th>R²</th>
<th>D’</th>
<th>A</th>
<th>C</th>
<th>GA</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (FRAGC)</td>
<td>0.158</td>
<td>0.892</td>
<td>0.394</td>
<td>0.299</td>
<td>0.296</td>
<td>0.010</td>
</tr>
<tr>
<td>Spain</td>
<td>0.193</td>
<td>0.885</td>
<td>0.348</td>
<td>0.298</td>
<td>0.342</td>
<td>0.013</td>
</tr>
<tr>
<td>Sweden (EIRA)</td>
<td>0.095</td>
<td>0.772</td>
<td>0.447</td>
<td>0.243</td>
<td>0.292</td>
<td>0.018</td>
</tr>
<tr>
<td>UK (WTCCC)</td>
<td>0.120</td>
<td>0.943</td>
<td>0.466</td>
<td>0.250</td>
<td>0.280</td>
<td>0.004</td>
</tr>
<tr>
<td>US (BRASS)</td>
<td>0.113</td>
<td>0.839</td>
<td>0.441</td>
<td>0.267</td>
<td>0.279</td>
<td>0.013</td>
</tr>
<tr>
<td>US (NARAC1)</td>
<td>0.125</td>
<td>0.902</td>
<td>0.443</td>
<td>0.255</td>
<td>0.294</td>
<td>0.008</td>
</tr>
<tr>
<td>US (NARAC2)</td>
<td>0.124</td>
<td>0.923</td>
<td>0.453</td>
<td>0.266</td>
<td>0.275</td>
<td>0.006</td>
</tr>
<tr>
<td>Canada</td>
<td>0.127</td>
<td>0.924</td>
<td>0.450</td>
<td>0.270</td>
<td>0.275</td>
<td>0.006</td>
</tr>
<tr>
<td>Japan</td>
<td>0.143</td>
<td>0.986</td>
<td>0.328</td>
<td>0.441</td>
<td>0.001</td>
<td>0.229</td>
</tr>
</tbody>
</table>

BRASS, Brigham and Women’s Hospital Rheumatoid Arthritis Quiescent Study; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; FRAGC, French Rheumatoid Arthritis Genetic Consortium; LD, linkage disequilibrium; NARAC, North American Rheumatoid Arthritis Consortium; WTCCC, Wellcome Trust Case Control Consortium. R² and D’ scores and haplotype frequencies were calculated from controls with use of PLINK software.

MATERIALS AND METHODS

Study design and sample collection

This case-control association study consisted of 11 715 RA cases and 26 493 controls and included a replication step. The discovery sample included 1584 RA patients and 1211 controls of European Caucasian ancestry from the French RA network and the ESPOR cohort. Our replication sample consisted of eight independent collections from six countries (Spain, Sweden, the UK, Canada, USA and Japan) for 10 131 RA cases and 25 282 controls (table 1). All patients fulfilled the 1987 American College of Rheumatology revised criteria for RA. All subjects provided written consent as approved by the recruiting site review board at each of the affiliate institutions.

Genotyping and data processing

The French (French Rheumatoid Arthritis Genetic Consortium (FRAGC)), Spanish, Swedish (Epidemiological Investigation of Rheumatoid Arthritis (EIRA)) and Japanese collections, which include ACPA-positive and ACPA-negative patients, were genotyped for rs11439060 and rs9138. The genotypes were imputed for ACPA-positive RA collections (Wellcome Trust Case Control Consortium (WTCCC), Brigham and Women’s Hospital Rheumatoid Arthritis Quiescent Study (BRASS), North American Rheumatoid Arthritis Consortium 1 (NARAC1), NARAC2 and CANADA) (see table 1 and online supplementary note).

Statistical analysis

Statistical analysis involved use of R V 2.14.0 (http://www.R-project.org, the R Foundation for Statistical Computing, Vienna, Austria). All association analyses compared controls with RA cases and with subgroups by ACPA status. ORs, 95% CIs and associated p values were assessed by standard logistic regression. All tested models were adjusted by sex because other studies reported a sex-specific association of SPP1 and SLE.

Cases and controls were compared by haplotype-based association analysis of each SPP1 rs11439060-rs9138 haplotype using PLINK (table 2) (for details, see online supplementary text).

To identify which model best explained the haplotype-based association signal for the ACPA-negative RA subgroup in the discovery sample, we used the Akaike information criterion.
rs11439060 and rs9138 common alleles had an increased risk of ACPA-negative RA ($p=4.19\times10^{-3}$, $\text{P}_{\text{adj}}=8.38\times10^{-3}$), ORACPA-negative 1.350 (95% CI 1.100 to 1.660); figure 1A). In good agreement with the haplotype analysis, we found no association of this SPP1 risk-allele combination and ACPA-positive RA ($p=0.445$, $\text{P}_{\text{adj}}=0.890$, ORACPA-positive 1.077 (95% CI 0.891 to 1.303; figure 1B).

Heterogeneity tests allowed us to combine all the populations investigated (figure 1A–C). Therefore, we tested the SPP1 rs11439060 and rs9138 risk-allele combination (hereafter shortened to ‘SPP1 risk-allele combination’) for replication in three samples of ACPA-negative RA patients and replicated the association with the ACPA-negative subgroup ($p=5.52\times10^{-4}$, ORACPA-negative 1.234 (95% CI 1.105 to 1.390); figure 1A). The combined analysis established SPP1 as an ACPA-negative RA risk factor ($p=1.29\times10^{-5}$, ORACPA-negative 1.257 (95% CI 1.135 to 1.394); figure 1A). The AIC for the combined population confirmed that the best-fit model was the SPP1 risk-allele combination (see online supplementary table S2).

Next, to further validate whether the SPP1 contribution was restricted to ACPA-negative RA, we tested an association in ACPA-positive disease using additional samples and found a weak association ($p=0.015$, ORACPA-positive 1.072 (95% CI 1.014 to 1.134); figure 1B), which led to an association with overall RA ($p=8.38\times10^{-4}$, OR 1.094 (95% CI 1.038 to 1.153); figure 1C). The SPP1 risk-allele combination had a differential effect on risk of ACPA-negative and ACPA-positive disease (non-overlapping OR intervals) (see online supplementary figure S1). In testing the heterogeneity between ACPA-positive and ACPA-negative RA by multinomial logistic regression, we found a distinct contribution of the SPP1 risk-allele combination and risk of both ACPA-negative and ACPA-positive disease ($p=7.33\times10^{-5}$).

OPN expression and eQTL data

We investigated the effect of the SPP1 rs11439060 and rs9138 risk-allele combination (ILMN_1651354 and ILMN_2374449 probes) on OPN expression in macrophages, which are well known to express OPN, using data for 599 individuals from the Cardiogenics Transcriptomic Study. Genotyping data for SPP1 rs10516798, rs12641001, rs6840362, rs7685225, rs6818927, rs7675246 and rs6838095 was used to calculate allele dosage for both rs11439060 and rs9138 genotypes using IMPUTE V2.3.0, with the genotype data for the 379 European founders from the 1000 Genome Project as a reference. The adjusted expression was analysed by linear regression for the corresponding p values.

s-OPN and ACPA serum levels

s-OPN level was measured in baseline serum samples from 60 RA patients of representative age, sex and genotype in the ESPOIR cohort by use of the Assay Designs human OPN ELISA kit (R&D Systems Europe, Lille, France). Samples from French Caucasian healthy unrelated donors (n=29) and SLE patients (n=32), taken from the Rheumatology Department of the Bichat hospital, were tested. Anticyclic citrullinated peptide 2 (anti-CCP2) level was assessed in baseline serum samples of ACPA-negative RA patients (n=37) from the ESPOIR cohort by use of the Assay Designs human OPN ELISA kit (Immunoscan, Eurodiagnostica, Arnhem, The Netherlands).

Non-parametric Mann–Whitney U or Kruskal–Wallis test was used to compare serum s-OPN level in two allelic combination subgroups (ie, presence or absence of the SPP1 risk-allele combination) or rs11439060 and rs9138 genotype distribution, respectively. Pearson linear regression analysis with GraphPad Prism V6.0 (http://www.graphpad.com/scientific-software/prism/) was used for correlation analysis of OPN and anti-CCP2 serum levels.

RESULTS

Genetic association study

Given the association of the SPP1 rs11439060-rs9138 haplotype and various autoimmune conditions, we assessed its association with RA. In a discovery sample of 1585 RA patients and 1211 healthy controls of French Caucasian origin, we found an association of two SPP1 haplotypes and RA restricted to the ACPA-negative subset: the rs11439060-rs9138A haplotype (hereafter termed ‘-A’) showed a risk effect ($p=0.012$, ORACPA-negative 1.197 (95% CI 1.040 to 1.378)) and the GA haplotype a protective effect ($p=0.012$, ORACPA-negative 0.818 (95% CI 0.698 to 0.957)) (see online supplementary table S1). The lowest AIC value, which identifies the best-fit model, was the recessive model with allelic heterogeneity (see online supplementary table S2): rare alleles had a protective effect; individuals carrying at least three rs11439060 and rs9138 common alleles had an increased risk of ACPA-negative RA ($p=4.19\times10^{-3}$, $\text{P}_{\text{adj}}=8.38\times10^{-3}$, ORACPA-negative 1.350 (95% CI 1.100 to 1.660); figure 1A).

Association with s-OPN serum level

To further corroborate the SPP1 eQTL findings, we investigated the possible functional consequence of the SPP1 risk-allele combination on s-OPN serum levels in RA patients with no biologic therapy (ESPOIR cohort) who were previously genotyped for rs11439060 and rs9138 (n=60). In addition, we assessed s-OPN serum level in SLE patients (n=32) and controls (n=29), considered positive and negative control populations, respectively. Mean serum s-OPN protein level was higher in SLE subjects than in RA subjects and controls (65.02±38.71 ng/mL, 34.64±19.95 ng/mL and 12.99±16.26 ng/mL, respectively; figure 3A). In agreement with the eQTL results, mean serum s-OPN protein level was lower in RA patients with than without the SPP1 risk-allele combination (29.66±15.99 vs 44.62±23.54 mg/mL, p=0.0157; figure 3B). Of interest, rs11439060
was not associated with s-OPN serum level, whereas rs9138 slightly modulated s-OPN serum level (see online supplementary figure S2).

Correlation between s-OPN and ACPA serum level
Because our genetic data demonstrated that SPP1 had a differential effect on risk of ACPA-negative and ACPA-positive RA and the risk-allele combination was associated with low SPP1 expression and serum s-OPN level, we wondered whether s-OPN serum level was associated with ACPA production. We found a positive correlation between anti-CCP2 and s-OPN serum levels in 37 anti-CCP2-positive RA patients with no biologic therapy (ESPOIR cohort) (p=0.005, r=0.483; figure 4).

DISCUSSION
We provide the first evidence of a distinct genetic contribution of SPP1 to risk of RA by ACPA status. Previous studies of RA have suggested that associated loci predispose to specific subsets of the disease characterised by ACPA status. These genetically distinct forms of RA should be analysed separately. Our results indicate that the combination of ≥3 frequent alleles of two SPP1 variants, rs11439060 and rs9138, is associated mainly with ACPA-negative disease (p=1.29×10⁻⁶) and less with ACPA-positive disease as compared with healthy controls (p=0.0148). The ORs between these subgroups (ie, ACPA-positive and ACPA-negative) significantly differed (p=7.33×10⁻³), which provides evidence for a distinct contribution of SPP1 to risk of both ACPA-negative and ACPA-positive RA.

Of interest, in both our discovery sample (ie, French Caucasian population) and the combined sample, the best-fit model, provided by the AIC, was the recessive model with allelic heterogeneity, which led to the hypothesis of a true synergism of rs11439060 and rs9138 in RA susceptibility. This hypothesis is consistent with a growing number of other observations. In our study, as in the 1000 Genome Project Phase I, the SPP1 rs11439060-rs9138 haplotype structure differed for European and East Asian populations (table 2). Even with a different haplotype structure, rs11439060 and rs9138 showed a similar contribution, with an association of comparable magnitude and direction. Therefore, accounting for allelic combinations may be necessary to identify genetic effects that may otherwise be missed (see online supplementary table S3).

Indeed, the univariate approach considering only a single marker at a time, commonly used in GWAS, could overlook the complex interactions that often occur in biological systems.
findings support that common genetic factors in autoimmune diseases may be associated with a given marker but differ in the direction of the association.46, 47 We identified no predicted functional exonic variant in subjects carrying the \textit{SPP1} risk-allele combination (see online supplementary text), so, in addition to the functional data, both rs11439060 and rs9138 polymorphisms may indeed be the causal variants. Of note, the G insertion at position −156 generates a RUNX-2 binding site, which was found to increase \textit{SPP1} transcriptional activity.30 As well, rs9138, which is located in the 3′ UTR, was found to be significantly associated with OPN serum levels in controls27, 48 and males with SLE.29 However, direct re-sequencing of the \textit{SPP1} exons would be necessary to definitely exclude the existence of functional exonic variant in subjects carrying the \textit{SPP1} risk-allele combination.

Figure 2 Association of \textit{SPP1} risk-allele combination and \textit{SPP1} expression in macrophages of 599 subjects from the Cardiogenics Transcriptomic Study. Top box plot shows results of \textit{SPP1} ILMN_1651354 probe in macrophages. Bottom box plot shows results of \textit{SPP1} ILMN_2374449 probe in macrophages. Genotypes of rs11439060 and rs9138 were imputed. Best-called genotypes were used to stratify subjects for box plots (n=599; in red, n=247 subjects without the risk-allele combination; in green, n=352 subjects with the combination). p Values were derived from the probabilities of having the \textit{SPP1} risk-allele combination.

Figure 4 Correlation between secreted osteopontin (s-OPN) and anti-citrullinated protein antibody (ACPA) serum level. The line is the best-fit regression line. Each dot represents the anti-CCP2 serum level for one anti-CCP2-positive rheumatoid arthritis patient according to s-OPN serum level. In red, n=10 subjects without the risk allele combination; in green, n=27 subjects with the combination. The r values were evaluated by Pearson correlation analysis.
a very rare coding variant. Of interest, a recent large genetic association study of 25 genes from 20 GWAS-identified risk loci showing overlap among six common autoimmune disorders found little support for a significant impact of rare coding variants in known risk genes for the autoimmune phenotypes investigated.

In addition to the novel finding of SPP1 as an RA risk gene, our study suggests that the SPP1 risk-allele combination has a functional consequence. The risk-allele combination was associated with decreased SPP1 expression in macrophages in a large sample. However, at this step, we could not establish a definitive association of the SPP1 risk-allele combination because the data were from imputed genotypes, which is a limitation of our study. We next provide clear evidence of an association between the SPP1 risk-allele combination and low s-OPN serum level. Our results are consistent with a reported effect of rs9138 on s-OPN serum level. Conversely, no association of rs11439060 and s-OPN serum levels has been detected. The rs11439060 variant may have a synergistic effect in regulating both SPP1 and i-OPN production: by regulating SPP1 expression, rs11439060, located in the promoter, may cooperate with rs9138, located in the 3′ UTR, to regulate s-OPN serum level by altering its mRNA polyadenylation or stability. In agreement with (1) the greater effect of SPP1 on ACPA-negative than ACPA-positive RA and (2) the association of the SPP1 risk-allele combination and low serum s-OPN levels, we observed a weak correlation between ACPA levels and s-OPN serum levels. Thus, OPN may have an important role in regulating ACPA production.

Through the properties of both its isoforms, OPN has multiple contributions to the humoral immune response: in T cells, OPN potentiates proliferation, IFN-γ production and CD40 L expression, which in turn favours B-cell proliferation and antibody production. In plasmacytoid dendritic cells, i-OPN promotes type I IFN production, which may also enhance antibody responses. In several RA samples, the presence of a type I IFN signature in peripheral blood mononuclear cells was associated with the presence and titres of autoantibodies, which is similar to findings in other autoantibody-associated diseases. The type I IFN signature was also identified in a subset of arthralgia patients positive for autoantibodies in whom RA developed later. In addition to our findings, several lines of evidence support the hypothesis of a pivotal role of OPN in autoantibody production: rs1730582, a SPP1 promoter variant in high LD with rs11439060, was found to be associated with autoantibody-mediated cytopenia in SLE, and serum OPN level was associated with IgG serum level in DALD patients. Finally, rs9138, which modulates s-OPN serum level, was also reported to affect IFN-α serum activity in SLE.

In conclusion, our study, involving a large number of samples, demonstrates a significant contribution of SPP1 to risk of RA, the magnitude of the association most important in ACPA-negative RA. The SPP1 risk-allele combination of rs11439060 and rs9138 was associated with decreased expression of s-OPN serum level, which was correlated with ACPA production. Our study illustrates that accounting for allelic combinations could be of interest to identify genetic effects that may otherwise be ignored and could contribute to a better understanding of the genetic architecture and pathogenesis of complex diseases such as RA.

Author affiliations

1Plateforme de Génomique Constitutionnelle Assistance Publique Hôpitaux de Paris, Bichat Hospital, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

2Department of Internal Medicine, DHU FIRE, Assistance Publique Hôpitaux de Paris, Bichat Hospital, INSERM U699, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

3Department of Rheumatology, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris Descartes, Paris, France

4Instituto de Parasitolgia y Medicina Lopez-Neyra, CSIC, Granada, Spain

5Department of Cardiovascular Sciences, University of Leicester & Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK

6Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan

7Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

8Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan

9Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

10Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA

11Samuel Lunenfeld and Toronto General Research Institutes and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada

12Department of Rheumatology, UMR 1027, INSERM, Toulouse III University, Purpan Hospital, CHU Toulouse, Toulouse, France

13Genomic Medicine Department of Community, Family Medicine Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA

14Department of Rheumatology, Hospital Clínico, Madrid, Spain

15INSERM U698, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

16Department of Rheumatology, DHU FIRE, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

17Department of Rheumatology, CHU Rouen-Hôpitaux de Rouen and INSERM U905, Institute for Research and Innovation in Biomedicine (IRIB), Rouen University, Normandy, France

18Department of Rheumatology, Pellegrin Hospital, Bordeaux Selagen University, Bordeaux, France

19INSERM U773 CB83, F-75018, Paris, France

20Department of Hematology and Immunology, UFS Dysfonctionnements Immunitaires Assistance Publique Hôpitaux de Paris, Bichat Hospital, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

21Department of Rheumatology, Montpellier University Hospital, Montpellier, France

22Department of Rheumatology, DHU FIRE, Assistance Publique Hôpitaux de Paris, Bichat Hospital, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

23Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA

24Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden

25Bichat Faculty of Medicine, INSERM U699, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France

Acknowledgements PD is supported by a grant from the French Society of Rheumatology. KS was funded by the Canadian Institutes for Health Research grant MOP79321 and supported by the Canada Research Chair YO is supported by a grant from the Japan Society of the Promotion of Science (JSPS). EIRA study was supported by AFA, The Swedish Research Council, VINNOVA, King Gustaf V Foundation and EU grants (Autocure and BeTheCure). The Spanish biobank was partially funded by the RETICS Program, RD0800707 (RIER) from the Instituto de Salud Carlos III (ISCIII), within the VI PN de i+D+i 2008–2011. The ESPORH cohort was supported by an unrestricted grant from Merck Sharp and Dohme (MSD), ABOITT, WYETH-PFIZER, ROCHE, INSERM and The French Society of Rheumatology. The FRAGC biobank was supported by an unrestricted grant from ROCHE, PFIZER and UCB. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We are indebted to Professor Jane Worthington (Lead of Centre for Musculoskeletal Research Scientific Director, Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, The University of Manchester, NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK) and Professor Peter K. Gregersen and Dr Eli A. Stahl (Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, New York, USA) for making available SPP1 genotyping data from WTCCC and NARAC samples, respectively. We also thank Dr Shomi Oka (Clinical Research Center for Allergy and...
Rheumatology, Sagamihara Hospital, National Hospital Organization) for technical assistance; Dr Marie-Claude Babon for helpful comments on statistical analysis; Blandine Patillon for help on 1000 Genome data analysis; Dr Joëlle Benessiano (Centre de Ressource Biologique, Hôpital Bichat Claude-Bernard, Paris, France) and staff members of the Établissement Français du Sang for their assistance; Professor Bernard Grandchamp and Professor Nadem Soufrié (Hôpital Bichat Claude-Bernard) for assistance in setting up the French Caucasian control sample and Professor François Cambien for making available the CARDIOGENICS SPP1 expression data.

Contributors PD, SG, KS carried out the primary data analyses. PD, LP, JM and NT conducted genotyping and replication study. SG and KS conducted the eQTL analysis. PN, MH-N, JE-B, SC-M, CR and LK conducted OPN and ACPA serum level analysis. All other authors contributed to additional analyses and genotype and clinical data enrollments. SG and PD designed the study and wrote the manuscript, with contributions from all authors on the final version of the manuscript.

Competing interests None.

Patient consent Obtained.

Ethics approval CPP IDF 8, Paris, France.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Additional unpublished data are available for all the scientific community.

REFERENCES

Basic and translational research

Identification of secreted phosphoprotein 1 gene as a new rheumatoid arthritis susceptibility gene

Steven Gazal, Karim Sacre, Yannick Allanore, et al.

Ann Rheum Dis published online January 21, 2014
doi: 10.1136/annrheumdis-2013-204581

Updated information and services can be found at:
http://ard.bmj.com/content/early/2014/01/21/annrheumdis-2013-204581.full.html

These include:

Data Supplement
"Supplementary Data"
http://ard.bmj.com/content/suppl/2014/01/21/annrheumdis-2013-204581.DC1.html

References
This article cites 56 articles, 10 of which can be accessed free at:
http://ard.bmj.com/content/early/2014/01/21/annrheumdis-2013-204581.full.html#ref-list-1

P<P
Published online January 21, 2014 in advance of the print journal.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Articles on similar topics can be found in the following collections

- Connective tissue disease (3349 articles)
- Degenerative joint disease (3636 articles)
- Genetics (752 articles)
- Immunology (including allergy) (3953 articles)
- Musculoskeletal syndromes (3895 articles)
- Rheumatoid arthritis (2541 articles)

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/