PTPN22 R620W genotype-phenotype correlation analysis and gene-environment interaction study in early rheumatoid arthritis: results from the ESPOIR cohort

Carine Salliot1, Karen Dawidowicz2, Cédric Lukas3, Mickael Guedj4, Caroline Paccard5, Joelle Benessiano6, Maxime Dougados1, Pascale Nicaise7, Olivier Meyer2 and Phillipe Dieude2,8

Abstract

Objectives. To investigate genotype-phenotype correlation and gene-environment interaction between PTPN22 R620W environmental factors such as tobacco/hormonal treatments in an inception cohort of RA patients.

Methods. An intra-cohort study including 532 Caucasian RA patients genotyped for the PTPN22 rs2476601 polymorphism was performed. Anti-CCP and RF status at baseline, presence of bone erosions at 1 year, HLADR1 and/or DR4 status, demography, comorbidities, exposure to tobacco with the cumulative dose in pack-years, hormonal treatments and treatments received for RA were collected. Logistic regression was performed to estimate the ORs and multiplicative interaction with adjustment for confounding factors. Gene-environment interaction was estimated by the relative excess risk due to interaction (RERI), attributable proportion (AP) and synergy index (SI).

Results. PTPN22 620W risk allele was associated with ACPA production [odds ratio (OR) = 2.21, 95% CI 1.4, 3.4, \(P < 0.0001 \)]. Hormonal treatment exposition and smoking were found to act with a protective effect against ACPA production (OR = 0.44, 95% CI 0.3, 0.7, \(P = 0.001 \)) and early bone erosion (OR = 0.56, 95% CI 0.4-0.8, \(P = 0.003 \)), respectively, and independently of HLADR and PTPN22 status. No evidence for a gene-environment interaction was detected.

Conclusion. These data provide new insights into the pathogenesis of RA, underlying the pivotal key role of environmental factors in the typical heterogeneity of RA.

Key words: Early RA, Cohort, PTPN22 620W, Smoking, Hormonal treatments.

Introduction

Gene–gene and gene–environment interactions are key features in the development of RA and other complex diseases. To date, the main pathogenesis hypothesis would be an interaction between the HLA-DRB1-shared epitope alleles (HLA-DRB1*SE) and tobacco smoking as risk factor for the production of anti-citrullinated protein/peptide antibodies (ACPAs), and then the development of RA [1–2].

Other genetic and environmental factors could play a role in the pathogenesis of RA. The protein tyrosine phosphatase non-receptor 22 (PTPN22) rs2476601 single nucleotide polymorphism (SNP) has been identified as a
susceptibility genetic factor for various autoimmune diseases including RA [3]. This association would be restricted to the rheumatoid factor (RF) and/or the ACPA positive subset. [4, 5].

Regarding others environmental risk factors, two meta-analyses of case-control and cohort studies suggested a protective effect of oral contraception (OC) regarding RA susceptibility [6, 7]. More recently, we have reported that hormonal replacement therapy (HRT) may reduce the risk of anti-CCP antibody production in RA women carrying HLADRB1*01 and/or HLADRB1*04 alleles [8]. Therefore, our objectives were (i) to perform a PTPN22 rs2476601 genotype-phenotype correlation analysis; (ii) to test for interactions between PTPN22 and environmental factors (tobacco smoking and global hormonal exposure) as influencing both ACPA and erosive status in RA, using intra-cohort analyses.

Methods
Study population and design
The Evaluation et Suivi des Polyarthrites Indifférenciées Récentes (ESPOIR) cohort has been previously described (French cohort of early arthritis) [8, 9]. The study was approved by the Institutional Review Board of the Montpellier University Hospital, which was the coordinating centre for this cohort. Before inclusion, all patients gave their written informed consent to participate in this prospective follow-up study.

From the 813 patients recruited from November 2002 to April 2005 with early polyarthritis, 532 were Caucasian with a diagnosis of RA by Year 1 and an available PTPN22 rs2476601 genotype. RA was defined by fulfilment of the ACR 1987 criteria either at baseline, 6- or 12-month follow-up visit.

All the subjects of the ESPOIR sample were genotyped for the PTPN22 rs2476601 SNP using a competitive allele-specific PCR system (Kaspar genotyping, Kbioscience, Hoddeston, UK) and Taqman SNP genotyping assay allelic discrimination method (Applied Biosystems, Foster City, CA, USA) as previously described [10]. The average genotype completeness was 98%. The accuracy was >99%, according to duplicate genotyping of 10% of all samples. HLADRB1 genotypes (*01 and/or *04) were determined in each centre.

As outcomes, we chose the presence of ACPA at baseline and the presence of at least one erosion at 1 year (on hand and foot X-rays). As potential risk factors, we assessed the presence of the PTPN22 620W risk allele (as none/any), cigarette smoking as never/ever and categorized as <10 or ≥10 pack-years and hormonal treatments (HRT and/or OC, never/ever). The main characteristics of the study population are summarized in Table 1.

Statistical analyses
Means and standard deviation (SD) were used to summarize continuous data and categorical data are summarized by counts and percentages. Student’s t-test was used to compare most continuous variables between groups formed by anti-CCP or the presence of erosions by Year 1. For highly skewed data, the Mann-Whitney U test was used. For categorical variables, comparisons were made using Pearson’s chi-square or Fisher’s exact test.

To investigate the relationship between the PTPN22 620W risk allele and the two environmental factors in RA patients, we used two methods:

(i) Association measures: the dependence of each outcome on potential predictors was assessed using logistic regression and adjusting for potential confounding factors which were selected using the data in the literature and the results of the univariate analysis (P < 0.20) [11, 12]. For the model-building process of logistic regressions, we avoided assessing in the same model highly correlated covariates. The goodness of fit of the models was analysed as described by Hosmer and Lemeshow [13]. The results are presented as odd ratios (ORs) and 95% Confidence Interval (95% CI).

(ii) Biological interaction between two risk factors A and B means that A and B are not independent in causing a disease. If the combined effect of A and B is larger (or smaller) than (a) the sum of the individual effects, there is interaction on an additive scale, and (b) the product of the individual effects, there is interaction on a multiplicative scale.

For the assessment of gene-environment interactions on an additive scale, we estimated the relative excess risk due to interaction (RERI), attributable proportion (AP) and the synergy index (SI). RERI and AP of 0, and SI of 1 indicate no interaction. Multiplicative interaction was assessed by adding an interaction variable (product of the gene and environmental factor individual effects) to the logistic regression models [14]. Analyses were performed using Statistical Package for the Social Sciences software for Windows version 16.0 (SPSS Inc., Chicago, IL, USA). A P-value of <0.05 was taken to indicate statistical significance. For estimations of RERI, AP and SI, we used the Microsoft Excel spreadsheet provided by G.Y. Zou [15].

Results
Effects of PTPN22 620W risk allele, smoking and the combination of both on the presence of ACPA at baseline or erosions at 1 year

Effect on the ACPA status
Univariate analysis found the PTPN22 620W risk allele significantly associated with the presence of ACPA (OR = 2.21, 95% CI 1.4, 3.4, P < 0.0001). Conversely, no association with tobacco smoking was detected (OR = 1.19, 95% CI 0.8, 1.7, P = 0.30). RA ACPA-positive (ACP+) patients who carried the PTPN22 620W risk allele and who have ever smoked, had an OR of 3.09 (95% CI 1.7, 5.7); P < 0.0001. After adjustment for several confounding factors using logistic regression, we confirmed these results
Table 2. Smoking alone was not associated with ACPA status, whatever the cumulative dose. However, in patients who carried the PTPN22 620W risk allele, smoking appeared as a risk factor for the presence of ACPA with a smoking dose effect as suggested by the increase in the ORs associated with cumulative dose of tobacco (<10 pack-years and ≥10 pack-years). These findings suggested an interaction of a combined effect of the PTPN22 620W risk allele and cigarette smoking (OR = 4.28, 95% CI 2.0, 9.2, P < 0.0001) was larger than the sum and the product of individual effects. Nevertheless, this was not confirmed using interaction measures: RERI and AP were not significantly different from 0 and SI from 1, even in heavy smokers (at least 10 pack-years).

Effect on the early erosive status

Regarding the progress of erosions at 1 year, univariate analysis found no association with the PTPN22 620W risk allele (OR = 1.12, 95% CI 0.7, 1.8, P = 0.63). Of most interest, tobacco smoking was found to be associated with RA erosive status, acting with a protective effect (OR = 0.56, 95% CI 0.4, 0.8, P = 0.003). Multivariate logistic regression after adjustment for several confounding factors confirmed that smoking reduces significantly the risk of bone erosion (OR = 0.25, 95% CI 0.1, 0.6, Table 1.

Characteristics of the 532 Caucasian patients with RA

<table>
<thead>
<tr>
<th>Demographic data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender: female, n (%)</td>
<td>405 (76.1)</td>
<td></td>
</tr>
<tr>
<td>Age at inclusion, mean (s.d.), years</td>
<td>48.9 (12.0)</td>
<td></td>
</tr>
<tr>
<td>Diagnosis of RA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom duration in days, mean (s.d.); median (range)</td>
<td>96.3 (42.6); 90 (7–180)</td>
<td></td>
</tr>
<tr>
<td>Fulfilled ACR criteria at baseline, n (%)</td>
<td>488 (91.7)</td>
<td></td>
</tr>
<tr>
<td>Medical history and comorbidities at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index (BMI), mean (s.d.) (range)</td>
<td>25.1 (4.5) (16.3–43.5)</td>
<td></td>
</tr>
<tr>
<td>Cigarette smoking ever, n (%)</td>
<td>263 (49.4)</td>
<td></td>
</tr>
<tr>
<td>Cumulative dose of tobacco consumption, mean (s.d.) (range), pack-years</td>
<td>9.4 (14.9) (0–92)</td>
<td></td>
</tr>
<tr>
<td>Cumulative dose of tobacco, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 pack-years</td>
<td>354/526 (67.3)</td>
<td></td>
</tr>
<tr>
<td>≥10 pack-years</td>
<td>172/526 (32.7)</td>
<td></td>
</tr>
<tr>
<td>Duration of tobacco consumption, mean (s.d.) (range), years</td>
<td>10.2 (13.1) (0–50)</td>
<td></td>
</tr>
<tr>
<td>History of CVD, n (%)</td>
<td>89 (16.7)</td>
<td></td>
</tr>
<tr>
<td>History of diabetes, n (%)</td>
<td>21 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolaemia, n (%)</td>
<td>76 (14.3)</td>
<td></td>
</tr>
<tr>
<td>Hypertriglyceridaemia, n (%)</td>
<td>18 (3.4)</td>
<td></td>
</tr>
<tr>
<td>History of malignancy, n (%)</td>
<td>18 (3.4)</td>
<td></td>
</tr>
<tr>
<td>Hormonal treatments in women, n = 405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OC, n pts (%)</td>
<td>170/405 (42.0)</td>
<td></td>
</tr>
<tr>
<td>Menopause, n (%)</td>
<td>185/405 (45.7)</td>
<td></td>
</tr>
<tr>
<td>HRT, n (%)</td>
<td>114/405 (28.1)</td>
<td></td>
</tr>
<tr>
<td>Hormonal treatment, b n (%)</td>
<td>242/405 (59.7)</td>
<td></td>
</tr>
<tr>
<td>Rheumatic disease treatment received from baseline to 1 year of follow-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever DMARDs, n (%)</td>
<td>465/517 (90.0)</td>
<td></td>
</tr>
<tr>
<td>Ever MTX, n (%)</td>
<td>351/517 (67.9)</td>
<td></td>
</tr>
<tr>
<td>Ever anti-TNF, n (%)</td>
<td>40/517 (7.7)</td>
<td></td>
</tr>
<tr>
<td>Number of DMARDs, mean (s.d.) (range)</td>
<td>1.3 (0.8) (0–5)</td>
<td></td>
</tr>
<tr>
<td>Ever oral steroids, n (%)</td>
<td>299/509 (58.7)</td>
<td></td>
</tr>
<tr>
<td>Ever NSAID, n (%)</td>
<td>504 (94.7)</td>
<td></td>
</tr>
<tr>
<td>Blood tests and genetics at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP, mean (s.d.) (range), mg/l</td>
<td>21.9 (34.9) (0–384)</td>
<td></td>
</tr>
<tr>
<td>Immunoglobulin (Ig) M RF, mean (s.d.) (range), UI/ml</td>
<td>147.5 (645.8) (2–9924)</td>
<td></td>
</tr>
<tr>
<td>IgM RF + (ELISA, positive if >9 UI/ml), n (%)</td>
<td>285 (53.6)</td>
<td></td>
</tr>
<tr>
<td>Anti-CCP2 + (ELISA, positive if >50 U/ml), n (%)</td>
<td>247 (46.4)</td>
<td></td>
</tr>
<tr>
<td>Anti-CCP2, mean (s.d.) (range), U/ml</td>
<td>528.1 (1302.7) (0–13 428)</td>
<td></td>
</tr>
<tr>
<td>Presence of HLA-DRB1 alleles (*01 and/or *04), n (%)</td>
<td>293/506 (58)</td>
<td></td>
</tr>
<tr>
<td>Presence of PTPN22 620w alleles (GA or AA), n (%)</td>
<td>115 (21.6)</td>
<td></td>
</tr>
<tr>
<td>Structural damage (baseline 1 year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total modified Sharp score at 1 year, mean (s.d.) (range)</td>
<td>7.9 (11.3) (0–83)</td>
<td></td>
</tr>
<tr>
<td>Presence of erosion at 1 year (≥1), n (%)</td>
<td>301/470 (64)</td>
<td></td>
</tr>
<tr>
<td>Erosion at 1 year, mean (s.d.) (range)</td>
<td>4.5 (7.9) (0–66)</td>
<td></td>
</tr>
</tbody>
</table>

*Delay in days between the first permanent swollen joint and inclusion in the ESPOIR cohort. bHormonal treatment means OC and/or HRT. CVD: cardiovascular diseases (at least one cardiovascular event among hypertension, myocardial infarction or stroke).
Effects of PTPN22 620W risk allele, hormonal treatments in women and the combination of both on the presence of ACPA at baseline or erosions at 1 year

Effect on the ACPA status

After adjustment for several confounding factors, multivariate logistic regression analysis confirmed the results of univariate analysis (data not shown): the PTPN22 620W risk allele was associated with ACPA+ status (OR = 2.13, 95% CI 1.3, 3.5, \(P = 0.003 \)). Interestingly, global exposure to hormonal therapy was found to decrease the risk of ACPA production (OR = 0.44, 95% CI 0.3, 0.7, \(P = 0.001 \)), independently of HLADR status.

When both factors were combined, no influence of the combined factors was observed (OR = 0.91, 95% CI 0.4, 1.8, \(P = 0.78 \)), suggesting an antagonistic gene-environment interaction. However, interaction measures did not confirm such interaction (Table 3).

Discussion

The results of the study reported herein provide evidence for a contribution of the PTPN22 620W risk allele to ACPA production, but not to early bone erosion. Further case–control association studies have reported such association between PTPN22 and ACPA-positive RA [4, 5]. However, only three have focused on intra-cohort analysis, which can provide an estimate of the true contribution of a genetic susceptibility factor to a specific phenotype regarding a given disease [16–18]. Regarding structural damage, two previous intra-cohort analyses have been published with opposite results: an association was found with PTPN22 in the European Research on Incapacitating Disease and Social Supports (EURIDISS) cohort but not in the Leiden Early Arthritis Cohort (EAC) cohort [19, 20]. Hence, PTNP22 appears to be a RA
susceptibility factor and also a genetic factor influencing the RA phenotype (i.e. ACPA production), but not structural damage.

Unlike the reported case-control studies comparing RA cases with controls [20] or with undifferentiated arthritis [21], no interaction between smoking and \textit{PTPN22} on ACPA production was observed in our RA intra-cohort analysis. Nevertheless, this result was in accordance with Kallberg et al.’s [22] study performed in two RA cohorts. Other RA intra-cohort analyses are required to better understand the role of both \textit{PTPN22} and smoking in ACPA production.

In good agreement with two large intra-cohort studies, cigarette smoking was detected as a protective environmental factor against bone erosion with a dose effect [23, 24]. Conversely, a worse radiographic outcome in RA patients who have ever smoked was detected in a very small sample size, possibly explaining such discrepancy [25].

We have previously reported protective effect on the production of anti-CCP of HRT in patients who carry HLA-DRB1*01 and/or HLA-DRB1*04 [8]. Interestingly, the present study provides evidence for a direct role of hormonal exposure by protecting against ACPA production, independently of both \textit{PTPN22} and HLA-DRB1.

Methodological limitations of genetic and environmental studies must always be considered. Indeed, many studies that could not be replicated in independent groups appear statistically underpowered in the field of complex genetic diseases and are often shown to be falsely positive. Appropriate sample sizes are critical for detecting slight differences between two populations, as expected in these diseases, and efforts to recruit large cohorts are mandatory to provide sufficient statistical power. For association measures, the number of patients included seems to be sufficient. Nevertheless, the lack of interaction between the \textit{PTPN22} R620W variant and environmental factors could be due to the lack of power for interaction measures: calculations showed a power of 55% for interaction measures [26]. Moreover, the genetic background of the studied population should be as homogeneous as possible, thereby limiting the possibility of result bias by population stratification. To avoid these biases, we have focused on European Caucasian individuals and recruited a large sample size through the French networks to detect any association that thus highly favoured the validity of the observed association.

Nonetheless, independent RA intra-cohort analysis is mandatory to provide a reliable replication of our results, which could be interpreted as conflicting with those previously reported in case-control studies.

In conclusion, the current report confirmed the involvement of \textit{PTPN22} in ACPA production and provides evidence for a direct role of both hormonal exposure and tobacco smoking as environmental factors acting with a protective effect against ACPA production and early bone erosion, respectively. Interestingly, such associations were found to be independent of both \textit{PTPN22} and

Table 3: Effect of \textit{PTPN22} 620W, hormonal treatments and the combination of both in the presence of anti-CCP and erosions in RA women (logistic regressions and interaction measures)

<table>
<thead>
<tr>
<th>\textit{PTPN22} 620w</th>
<th>Hormonal treatments</th>
<th>Anti-CCP* (n = 179)</th>
<th>Anti-CCP* (n = 226)</th>
<th>ORa (95%CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Never</td>
<td>60</td>
<td>52</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Never</td>
<td>23</td>
<td>10</td>
<td>2.40 (1.3, 4.4)</td>
<td>0.005</td>
</tr>
<tr>
<td>None</td>
<td>Ever</td>
<td>75</td>
<td>144</td>
<td>0.44 (0.3, 0.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>Any</td>
<td>Ever</td>
<td>21</td>
<td>20</td>
<td>1.41 (0.6, 3.3)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\textit{PTPN22} 620w</th>
<th>Hormonal treatments</th>
<th>EROSION* (n = 226)</th>
<th>EROSION* (n = 135)</th>
<th>ORa (95%CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Never</td>
<td>67</td>
<td>31</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Never</td>
<td>23</td>
<td>7</td>
<td>0.91 (0.5, 1.7)</td>
<td>0.78</td>
</tr>
<tr>
<td>None</td>
<td>Ever</td>
<td>118</td>
<td>78</td>
<td>0.66 (0.4, 1.1)</td>
<td>0.13</td>
</tr>
<tr>
<td>Any</td>
<td>Ever</td>
<td>18</td>
<td>19</td>
<td>0.44 (0.1, 1.2)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Hormonal treatments include OC and/or HRT. \textit{a}Adjusted ORs: for the presence of anti-CCP: smoking ever, BMI, age at baseline, HLA DR1 and/or DR4, CVD, malignancy, diabetes, hypercholesterolaemia, hypertriglyceridaemia; and for the presence of erosions: smoking ever, age at baseline, HLA DR1 and/or DR4, anti-TNF ever, MTX ever, number of DMARDs received, oral steroids ever, presence of anti-CCP at baseline, HAQ score and DAS-28 score at baseline. \textit{b}P-value for multiplicative interaction term between \textit{PTPN22} genotype and hormonal treatments.
HLA-DRB1 RA patient status. No evidence for a gene–environment interaction was detected, suggesting that the three genetic and environmental factors investigated contribute independently to modulation of the RA phenotype. These data provide new insights into RA pathogenesis, underlying the pivotal role of environmental factors in the typical heterogeneity of RA.

Rheumatology key messages

- Gene–phenotype correlation between PTPN22 risk allele and ACPA-positive RA.
- In women, hormonal treatment appeared to be a protective factor against ACPA in RA.
- No evidence for a gene–environment interaction (between PTPN22 risk allele, hormonal treatment and smoking) was detected.

Acknowledgements

We wish to thank Nathalie Rincheval who did expert monitoring and data management, S. Martin who did all the central dosages of CRP, IgA and IgM RF and anti-CCP antibodies, the biological resources centre (Paris-Bichat, J. Benessiano), which was in charge of centralizing and managing biological data collection and all the investigators who recruited and followed the patients (F. Berenbaum, Paris-Saint Antoine, M.C. Boissier, Paris-Bobigny, A. Cantagrel, Toulouse, B. Combe, Montpellier, M. Dougados, Paris-Cochin, P. Fardelonne et P Boumier Amiens, B. Fautrel, P Bourgeois, Paris-La Pitié, R.M. Flopi, Lille, Ph. Goupille, Tours, F. Liote, Paris-Lariboisière, X. Le Loet, O. Vittecoq, Rouen, X. Mariette, Paris Bicêtre, O. Meyer, Paris Bichat, A. Saraux, Brest, Th Schaeverbeke, Bordeaux and J. Sibilia, Strasbourg). The authors gratefully acknowledge Guang Yong Zou from the Department of Epidemiology and Biostatistics, University of Western Ontario, Canada, for providing us the Microsoft Excel spreadsheet useful to estimate additive interaction.

Funding: An unrestricted grant from Merck Sharp and Dohme (MSD) was allocated for the first 5 years. Two additional grants from INSERM were obtained to support part of the biological database. The French Society of Rheumatology, Abbott and Wyeth also supported the ESPOIR cohort study.

Disclosure statement: The authors have declared no conflicts of interest.

Supplementary data

Supplementary data are available at Rheumatology Online.

References

8 Salliot C, Bombardier C, Saraux A, Combe B, Dougados M. Hormonal replacement therapy may reduce the risk for RA in women with early arthritis who carry HLA-DRB1 *01 and/or *04 alleles by protecting against the production of anti-CCP: results from the ESPOIR cohort. Ann Rheum Dis 2010;69:1683–6.
16 Michou L, Teixeira VH, Pierlot C et al. Associations between genetic factors, tobacco smoking and

17 Morgan AW, Thomson W, Martin SG et al. Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum 2009;60:2565–76.

